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A mathematical model of rectilinear surface waves incident on a submerged circular 
sill is developed. The class of waves considered consists of those for which the ratio of 
wavelength to water depth is large but which do not necessarily belong in the long- 
wave category. A friction damping term is introduced into the equations of motion 
and the solutions obtained for the regions over the sill and in the ocean are matched by 
assuming a continuous surface and energy flux a t  the sill edge. The results show large 
reductions in the &-factor of the resonance peaks brought about by friction damping. 
It is also found that, except at low frequency, a large number of overlapping resonance 
peaks which are out of phase with one another occupy a relatively narrow frequency 
band such that these resonance peaks effectively cancel one another. Experiments 
were performed to determine the friction constant used in the equations of motion and, 
using this friction constant, the theoretical results of wave resonance are verified. 

1. Introduction 
The problem dealt with in this paper is that of a continuous train of frictionally 

damped surface waves incident on a submerged circular sill situated in a non-rotating 
unbounded ocean. A portion of the incident wave energy is scattered a t  the sill edge 
and the remaining portion is transmitted onto the sill. Once over the sill the waves 
undergo multiple partial reflexions at the sill edge and, in doing so, scatter some of 
their energy to infinity. It has been shown for circular symmetry (Longuet-Higgins 
1967) that even if friction is neglected there is always some loss of energy from the sill 
to infinity although this loss may be very small. The response coefficients for frictionless 
long waves have been derived by Longuet-Higgins (1967) and show the possibility of 
large amplification over the sill for certain frequencies, the wave energy in these 
instances being said to be nearly trapped. Subsequent work by Summerfield (1969) was 
carried out with a circular island shelf model and an elliptical sill model. Many others 
have investigated the amplitude response due to step-type changes in the bathymetry 
in the ocean; an extensive survey of the literature of this subject is presented by 
Summerfield (1969). In  many cases of theoretical work in this field the waves were 
considered t o  be in the long-wave region. With this proviso it was satisfactory to 
impose, at the depth discontinuity, the conditions of a continuous surface streamline 
and a continuous mass flux, the latter being evaluated by assuming a discontinuous 
horizontal particle velocity a t  the sill edge. But when long-wave theory is not valid, 
these conditions give the physically unsatisfactory result that more energy is being 
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carried away from the step by the transmitted and reflected waves than is arriving 
at it. To eliminate this inconsistency the mass flux condition was replaced by an 
energy flux condition. Section 4 deals in more detail with this choice of matching 
conditions at  the discontinuity. 

In  almost all cases where waves lie in the intermediate-to-long class, the effect of 
friction will be of considerable importance; this will be especially so if the system being 
examined is a resonant one. A linear friction term is introduced ($ 2) into the equations 
of motion and an associated potential function is deduced ($3 ) .  The linear friction 
coefficient for the model studies is found from direct measurement of wave decay in the 
laboratory. 

As waves pass over a depth discontinuity there will be some loss of energy due to flow 
separation. Experiments on a one-dimensional shelf by Pite (1973) showed that this 
loss was significant when the incident waves progressed from the shallow to the deep 
water, but for incident waves travelling in the opposite direction no evidence of energy 
loss was apparent. In  the former instance, where there were energy losses, the reflected 
wave amplitudes agreed, within the experimental limitations, with the predicted ones 
whereas the transmitted wave amplitudes were, on the average, smaller than the 
theoretical ones by about 7 yo. It therefore appears from these experimental results 
that the extraneous losses near the sill edge will affect primarily the scattered wave and 
have a small effect on the waves over the sill. 

For the range of wave periods tested and using a depth of 0.84 cm it is found in 
5 7.1 that the minimum value for the decay coefficient is about 5 x cm-I. Therefore 
a wave travelling a distance equal to the sill diameter of 45.7cm would undergo a 
reduction in amplitude due to friction of about 23 yo with a corresponding energy loss 
of 40 yo. For the maximum value of this decay coefficient found in $7.1, the energy 
loss would be approximately 80 Yo. In  view of these rather high frictional losses found 
in this experiment it appears reasonable to ignore the energy lost from the waves over 
the sill to the secondary motion near the sill edge. The wavelength corresponding to 
the minimum decay was about 63.0 cm and that corresponding to the maximum about 
11.5 cm. In other circumstances where the dissipation is much less it is probable that the 
energy losses near the sill edge will gain importance; in these cases response coefficients 
calculated in $ 5  will not give an adequate description of the wave motion. 

Response coefficients are found in fj 5 for the waves generated over the sill and for 
those scattered away from the sill edge. The experimental verification of some of 
these theoretical results is described in $ 7  and in general shows good agreement. 

2. The linear friction term 
An approach to modelling the bottom friction whilst still retaining linear equations 

and irrotational motion is to assume that the bottom friction may be replaced by a 
distributed body force directly proportional to the near-bottom velocity. This approach 
must, however, be regarded as a first approximation. For the case where there are 
small motions and the friction coefficient depends only upon viscosity there appear in 
the literature a number of linear theories (for example Hough 1897; Biesell949) which 
give a description of the fluid motion both inside and outside the boundary layer. In  
large-scale oceanographic work the friction term is usually considered to be propor- 
tional to the square of the near-bottom velocity and any details of motion in the 
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generally turbulent dissipative layer near the bottom is ignored. This quadratic 
resistance term may be linearized by replacing it with the product of the near-bottom 
velocity and a suitably chosen constant (see, for example, Ippen & Harleman 1960). 
In this study, the linear friction constant is determined experimentally and the 
details of motion in the rotational bottom layer are ignored. 

3. The equations of motion 
A non-rotating co-ordinate system is considered in which the vertical co-ordinate z 

will be directed positive upwards and have its origin on the still water surface. The 
horizontal co-ordinates will be designated as x = (x, y)  in Cartesian co-ordinates or as 
x = ( r ,  0) in polar co-ordinates. Departures from the undisturbed water surface will be 
denoted by ~ ( x ,  t )  and it will be required that these are very much less than the fluid 
depth h or, more correctly, that the second-order term in the Stokes expansion is much 
less than the first such that the small amplitude approximation may be used. 

The frictional force is modelled empirically as a body force per unit mass: cubh-l, 
where u , ( x , t )  is the horizontal particle velocity near the bottom and c is a linear 
friction coefficient. This coefficient varies with the wave period since the period 
influences the thickness of the boundary layer (Li 1954) and hence the amount of 
dissipation per unit time. This dependence on the frequency does not appear in the 
theoretical development but is determined experimentally. 

The equation of motion for this model over a horizontal bed is 

aulat = - p - ~ p  - F - g, (1) 

where p is the fluid density, g is the acceleration due to gravity, p is the pressure, u is 
the partide veIocity and F is the friction force. It is assumed that there exists a 
potential function such that 

(a)  V2$c = 0 (2) 

and ( b )  v$c = u, (3) 

where the subscript c refers to a complex quantity of which only the real part is of 
physical significance. 

Using (3) in (1)  and integrating with respect to x yields the integrated Bernoulli 
equation: 

which at  the free surface becomes 

The vertical particle velocity at  the free surface is 

It follows from (3) that w = a$,/az. Thus the kinematic boundary condition a t  the free 
surface is 

(5) ra$,/azI,=,, = a v p .  
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At the bottom there is no vertical velocity so 

r~~ , /~z l ,= - ,  = 0. 

Assuming that the potential function can be written as a product of the form 
4, = &) <b(x) e-fd 

which is harmonic with time and using ( 4 b ) ,  (5) and (6) yields a solution of (3) as 

iuA' cosh K(z + h) @(x) e-iut, 
"= KsinhKh (7) 

where K and A' are constants. 

y axis, the potential function is 
In  the case where the wave crests propagate from left to right and are parallel to the 

icrA cosh K(z + h) ei(Kr-ot). '' = KsinhKh 

In physical problems involving circular symmetry, the solution can be written as 
icr cosh K(z + h) OD C { A , H ~ ) ( K ~ ) + B , H ~ ) ( K ~ ) ) ~ ~ S ~ B ~ - ~ " ~ ,  Kr 0. (9) 

"= KsinhKh n=O 

If the origin is included then a solution is 

iu cosh K(z  + h) 
"= KsinhKh n=O 

A,J,(Kr) ~ o s n e e - ~ ~ .  

The complex ' wavenumber' K = k + ia is evaluated by replacing 9, in (4 b )  with the 
right-hand side of (7), which gives the wavenumber 

8 sinh 2kh + (2c/ah) cosh kh sin ah 
29 sinh2 kh + sin2ah k = - - (  

and the decay coefficient 
a 2  - sin ah + (2c/rh) sin kh cos ah 
29 

a =- {  sinh2 kh + sin2 ah 

4. The matching condition at the depth discontinuity 
The partial reflexion of inviscid surface waves incident normally on a step-type 

depth discontinuity has been investigated by Lamb (1932), Bartholomeusz (1958), 
Le Mehaute (1960), Newman (1965), Ippen (1966), Miles (1967), Hilaly (1967) and 
Smith & Sprinks (1975) among others. For the special case of long waves they all 
obtained the same results for the reflexion and transmission coefficients. However, in 
many problems involving surface waves, the waves do not belong to this long-wave 
class. In particular, for the laboratory verification of wave trapping over a sill, as was 
carried out in this study, it was found difficult to devise an experimental set-up such 
that the waves were all in the strictly long-wave category. The value of kh used here 
ranged from 0.08 to 0.31 for the waves over the sill and from 0-16 to 0.65 for the waves 
in the 'ocean'. 

To avoid the mathematical complexities involved in solving the complete boundary- 
value problem an approximate solution was obtained by ignoring any details of motion 
near the sill edge. If, as in all the above theories, there are assumed to be no energy 
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FIGURE 1. Comparison of the transmitted and reflected wave amplitudes with reference to an 
incident wave of unit amplitude. - , using Miles’ variational solution ; - - - - , assuming 
continuity of surface elevation and energy flux at the step. IT, I, IT, I = transmitted wave ampli- 
tude, incident wave from right, left; (RI = reflected wave amplitude, lRll = (R,[ E IRI. 
h,/h, = 4, h, = 0.84 em. 

losses a t  the discontinuity then the incident energy flux must equal the sum of the 
reflected and transmitted energy fluxes when averaged over one wave period. The first 
matching condition was to assume that the instantaneous energy flux is continuous a t  
the step; this was found to yield a solution which conserved the time-average energy 
flux. 

Following all the above authors except Le Mehaute (1960), the second matching con- 
dition was the assumption that the surface is a continuous streamline. The condition 
of a continuous mass flux was not used since, except for long waves in the shallow 
region, these solutions were in poor agreement with Newman’s (1965) results. 

Evaluation of the transmission and reflexion coefficients for a step discontinuity 
using the continuous surface and energy conditions was carried out for various sets of 
parameters and the results compared with more accurate results computed using 
Miles’ (1967) variational technique. These calculations showed that if both depths are 
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very small compared with the wavelength then the two solutions coincide and are 
identical to Lamb’s (1932) and Bartholomeusz’s (1958) results. Figure 1 shows a com- 
parison between the results from the approximate solution and the variational one 
using a range of parameters corresponding to the ones used in the experiments. The 
good agreement between these two sets of results is explained by examining the 
exponential factor in the exact formulation of the local disturbance (Bartholomeusz 
1958). For moderately long waves (kh < 0.7) this factor is less than about 

exp ( - 3 1x1 h-l) 

thus the standing-wave disturbance is confined to a small (compared with the wave- 
length) region near the step. Therefore, as remarked by Miles (1967), it is reasonable in 
this case to take the local disturbance as confined to an infinitesimal section near the 
step and thus, as was done here, to match the continuity conditions a t  the step. Owing 
to the small horizontal extent of the local disturbance at  the sill edge in comparison 
with the diameter of the sill used in the experiments, as well as to the agreement 
between the solutions shown in figure 1 for the step, it  was thought justified to use 
these approximate matching conditions at  the edge of the circular sill. 

5. The excitation of waves over a submerged circular sill 
A circular sill of radius R is taken to be centred at  the origin with a water depth above 

it of h,. A region, called the ocean, of infinite extent outside the sill has a constant 
depth of h,. Sinusoidal plane waves with unit amplitude along x = 0 are incident from 
the ocean and travel in the direction of increasing x. The potential function for these 
waves is given by (8) : 

( 4 i ) c  = exp [i(K,x - flt)I, 

where a subscript 1 refers to properties pertaining to the ocean and a subscript i refers 
to the incident wave. Transforming to polar co-ordinates x = r cos 8 and using a well- 
known identity involving cylindrical functions gives 

where e0 = 1 and E ,  = 2 for n 2 1.  
Upon reaching the sill edge some of the wave energy is scattered and some is trans- 

mitted across the sill to undergo multiple partial reflexions a t  the sill edge. It has been 
shown for circular symmetry (Longuet-Higgins 1967) that there is always some loss of 
energy from the sill to infinity. Since the origin has been excluded from the region 
designated as the ocean, the scattered wave may be represented by (9) with A ,  equal 
to zero. This eliminates Hankel functions of the second kind, which represent waves 
travelling inwards towards the origin, and leaves 

which represents outward-travelling waves. The subscripts refers to the scattered wave 
and henceforth the superscript ( 1 )  will be dropped for convenience. 
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The potential function for the waves over the sill is (10) : 
m 

(#,)c = P Z ( x )  e-irt A,J,(K,r) cosne, 
n= 0 

where the subscript 2 refers to the region 0 < r < R and the subscript f refers to the 
waves over the sill. 

5.1. The response coeflcients A ,  and Bn 
The matching condition of a continuous instantaneous energy flux at the sill edge is 

where @i = a$,/ar (j = 1,2)  is the radial particle velocity and 

$1 = -%t$i)C + (#s)c>, #z = %(#f)C}?  

9 { z }  designating the real part of z. 
The variable part of the pressure, P, (j = 1,2), is obtained from (4a):  

Equation (16) is an equation involving the sum of two linearly independent functions 
of time plus a constant term; by equating coefficients of like functions on either side 
of the equals sign, three equations result. Only two of these (along with two from the 
surface matching condition) are required to determine the complex constants A ,  and 
B,. Calculations carried out by Pite (1973) for a shelf model show that using the two 
equations involving the coefficients of the time-dependent functions yields a solution 
for the transmitted and reflected waves which conserves the time-averaged energy 
flux or equivalently satisfies the third equation. 

Owing to the periodicity of the functions in (16) it is easily proved that, instead of 
the lengthy process of taking the real part of (q5j)c and then calculating the products in 
this equation and integrating, what could be done is to use the complex-valued 
potential function in place of #j, calculate the products, integrate and equate real and 
imaginary parts. This gives two equations identical with those found from the time- 
dependent terms of (16). The equations corresponding to the continuous energy flux 
condition (16) are those obtained by equating real and imaginary parts of 

fl z z (e,inJn(KIR) +B,  Hn(KIR)) (emimJL(KIR) +B,H~(KlR))cosn~cosm5 
C O W  

n=O m=O 
m m  

n=O m=O 
= fz I: I: A ,  AmJ,(K2 R) J;(K,R) cos no cos me, (17) 

where 

and %A(KiR) = d%,(KjR)/d(KjR), 

%being any of the above cylindrical functions. The condition of a continuous surface 
elevat'ion at  r = R is 

[ri + Trlr=R+ = rflr=R-j 
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or that x ( E , ~ ~ E J , ( K , R ) + B ~ ~ ~ ( K ~ R ) ) C ~ ~ ~ B  = 2 A,J,(K,R)cosnB. 
n= 0 n=O 

Equating the nth components at r = R gives 

E,~"J,(K,R) + B, H,(K, R) = AnJn(K,R). 

Using the right-hand side of (18) in (17) and rearranging yields 

n=O 5 m=O AmJm(KIR) (~(a,inJ~(KlR)+B,H~(K,R))-~,J~(K,R)} cosn8cosmB = 0, 

which may be factorized into a term depending only on n and one depending only on m. 
That is, 

I m m 

C AmJm(K,R) cos m8 C - (E,~,JA(K~R) + B,HA(K, R)) - A,J,(K,R) cos n8 = 0. 
m= 0 n=O k 
Since A,, is not in general equal to zero, it follows that 

f1 f~l(s,inJ~(K1R) + B, HA(K1R)) -A,JA(K, R)  = 0. (19) 

The above equation along with the nth component of the surface matching condition 
gives a linear system of equations in two unknowns. 

Using the relation that for any argument X 
JA(X)  H p ( X )  - J,(X) H p ( X )  = - 2i/n.x, 

it follows immediately that 

and 

The ratio f, fC1 is found to be 

K4sinh2 K,hl 2K,h,+sinh2K,h,+i4c(~rh,)-~sinh K,h, I ' KE sinh, K ,  h, 2K, h, + sinh 2K1 h, + i4c(ahl)-l sinh K,h, 

which reduces to the ratio of the group velocities when friction is neglected. For 
frictionless long waves the response coefficients A ,  and B, are identical with those 
found by Longuet-Higgins (1967). 

That A ,  must remain finite can be seen from the following argument. B, has an 
upper bound of E,, otherwise more energy would be leaving the sill than arriving a t  it 
and the amplitude of the oscillations over the sill would diminish with time contrary 
to the steady-state solution. If A ,  -+- co then the bracketed term in the denominator 
of (20) must vanish. This is clearly impossible since the denominator of (21) would 
vanish too and unless the numerator was also zero the physically unacceptable result 
B,-+co would emerge. The numerator and denominator of (21) cannot vanish 
simultaneously owing to the placement of the zeros of the cylindrical functions. 

The amplitude of the wave over the sill adjusts itself until the energy lost to infinity 
is just balanced by that arriving from the incident wave. To gain this balance when the 
sill edge lies near a nodal circle, i.e. when J,(k,R) is small, requires a larger response 

( 
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FIGURE 2. The magnitude of the response coefficient A ,  for various values of the friction 
constant. __ , c = 0; . . . .  ., c = 3.84mrnls; -, c = 12.1mmls; ---- , c = 25.4mmls. 
The zeros of J,(E,R) are shown by vertical arrows. h,/h, = &, R/h, = 3.75 x los. 

coefficient over the sill than when the sill edge is such that the J,fk, R )  part of the wave 
amplitude is comparatively large. A similar result is seen in the large tidal amplification 
produced in channels open to the ocean a t  one end with lengths a(2m + 1 )  L such that 
the open end corresponds to a node. A comparison of the positions of the maxima for 
lA41 wjth the corresponding zeroes of J,(k,R) is shown on figure 2. 

The zeros of J,(k, R )  are interlaced and, for reasonably large values of the argument, 
separated by approximately n. Therefore in the interval between k,R and k, R + n, 
J,(k, R ) ,  Jl(k2 R ) ,  J,(k, R ) ,  . . ., J,_,(k,R) will all have zeros but higher-order functions 
will have no zeros. Thus, since the values ofk ,R which produce maxima for A ,  lie near 
zeros of J,(k,R) there will be at most m maxima for A ,  in the interval. It is not 
necessary that there be m maxima corresponding to the m zeros in the interval; this is 
a consequence of the modulus of the Hankel functions becoming large when the order 
of the function is increasingly greater than its argument k, R.  Thus the denominator in 
(20) becomes large end A ,  is small. Since the phases of A,J,(k,r) for different n are 
generally different, the sum of the responses a t  a given frequency will mask the 
individual behsviour of the separate components. This will not be the case for the 
smaller values of k ,  R ,  where only a few zeros producing widely separated maxima are 
found in a relatively wide frequency band. 

As in any resonating system, the effect of a dissipative friction force will be to reduce 
the Q-factor of the resonance peak and, for a given amount of friction, this reduction 
will be proportionately greater for the sharp, high-Q modes than for the ones with a 
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k;R 
FIQURE 3. The magnitude of the response coefficient B,  for various values of the friction 

constant. Curves as in figure 2. h2/hl = &-, R/h2 = 3.75 x lo3. 

lower &-factor. For the scattered wave in this model it is not expected that the 
coefficient IB,( will attain either of its extreme values of en or zero because of energy 
losses over the sill. Figure 2 shows the effects of friction on 1 A , / ,  which indicate that, 
in a physical situation where friction is important, the less highly tuned modes will be 
dominant and the highly tuned modes will have only a small effect on the surface 
configuration over the sill. The response coefficient / B,I is plotted on figure 3 and again 
there is a considerable smoothing of the peaks and troughs. 

The value of c determined here is useful only in the laboratory case and it is of some 
interest to apply the theory to oceanographical scales. A linearized friction coefficient 
of 2.4 mm/s was obtained by Weenink (1958) for tidal waves with periods in excess of 
a few hours while using the data of Iwagaki & Kakinuma (1967) a value of about 
51 mm/s was obtained for ocean swell with periods ranging from 10 to 20s. In  view of 
these values a reasonable intermediate estimate for c, for the periods used in figures 2 
and 3, would be in the neighbourhood of 13 mm/s. Figures 2 and 3 show the responses 
over a range of values ofc which includes oceanographical as well as laboratory values. 

From a practical standpoint what is of interest is not so much what the surface 
configurations of the individual components are at  any given time but rather what 
the extremes in the surface elevation are. These were found by obtaining, for a given r 
and 8, a sum for the complex series representing the instantaneous surface profile over 
the sill and then taking the modulus of this expression to find the amplitude of oscilla- 
tion. When finding the modulus of the expression representing the waves in the ocean 
it proved convenient to describe the incident wave in Cartesian co-ordinates instead 
of using the slowly converging series in (13). In  any practical calculation it is necessary 
to terminate the series after a given number of terms. An estimate of the number of 
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terms can be made by determining the order of the function that gives a rank 1 zero 
jn, near to the value of k,R that is of interest such that jnfl, and zeros of higher 
order do not exist near this value. This order may be determined by use of the approxi- 
mate relation for zeros of large order (Abramowitz & Stegun 1964, p. 371): 

jn , ,~n+1.86n*+1.03n-*+ ... . (22)  

6. Experimental equipment 
6.1. The wave tank and wave generation 

A shallow 3.05 by 6-10 m tank of depth 15 cm was constructed to investigate surface 
waves travelling in any direction. Two 2.55 m by 1-90 m glass plates supported on all 
edges and levelled to & 0.02 mm were used for the bottom of the model region. The 
remainder of the tank bottom was constructed of steel sheeting; this region was used 
for wave generation and absorption. This wave tray was supported 1-5 m off the floor 
by a sturdy iron channel base set on steel columns. An instrument carriage was con- 
structed such that the wave probe could be moved to any position in the wave tank. 
A movable gantry was built and isolated from the tank; thus any vibrations set up 
while making adjustments in the model area were not transmitted to the wave tank. 

The wave generator was of the piston type and consisted of a heavy steel plate 
machined to a close fit to the bottom and sides of the wave tank. This paddle was 
mounted ona rigid frame which in turn wassupported by ball races running ingrooved 
tracks to allow horizontal motion of the paddle. Oscillatory motion of the wave paddle 
was accomplished by use of a variable-speed rotary drive connected to the wave paddle 
by means of an adjustable eccentric and long connecting yoke. Adjustment of the 
degree of eccentricity determined the wave height and a yoke long compared with the 
degree of eccentricity ensured nearly simple harmonic motion. The variable-speed 
drive was mounted on a platform isolated from the wave tank to reduce mechanical 
vibration. 

A gear cog was mounted on the output shaft of the variable-speed drive; a set of 
automotive breaker points were set such that they opened and closed as the gear cog 
rotated. The number of times they opened and closed in a fixed time interval was 
recorded electronically by a digital counter. The average period of oscillation could 
then be accurately determined by knowing the number of teeth on the cog, the time 
interval and the number of impulses to the counter. 

6.2. The wave absorber 
By far the greatest difficulties with this type of experiment, where an infinite ocean is 
assumed in all directions, are first the elimina.tion of reflexions from anything but the 
model itself and second the production, in the model area, of a plane wave with 
constant height along its crest. These difficulties are not independent of one another 
in that it was relatively simple to design absorbers around the tank such that all 
reflected amplitudes were less than about 8 yo of the incident. amplitude, but this 
generally rendered a poor quality incident wave. On the other hand, if the wave 
absorbers were removed from all but the end of the tank an undistorted incident wave 
was obtained in the model area, but this was unsatisfactory since it led to the waves 
from the model area being reflected off the sides of the tank. Rubberized horsehair was 
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found to be a satisfactory material for the wave absorbers; as well as being a good 
absorber of wave energy it has the advantage of being readily available in 5 cm thick 
sheets and of being easily cut into any desired shape. All tests on the absorbers were 
done in a water depth of 3-36 cm, which corresponded to the depth used in the actual 
experiments. 

It was found that, by cutting the horsehair sheets into the form of a saw tooth to 
reduce their frontal area, it was possible to reduce the amplitude reflexion coefficient 
from the value of about 30 yo obtained when the waves were incident on a straight-line 
horsehair absorber to a value of 8 % or less. This type of reduced frontal area absorber 
is similar to that used in acoustical laboratories and was used down-wave of the model 
area in the experiments. Up-wave of the model area this type of design could not be 
used successfully. Incident waves travelling parallel to the ends of the saw-toothed 
absorber situated on the sides of the tank produced unwanted disturbances in the form 
of secondary waves travelling across the tank. It was thus necessary to have parallel 
sides perpendicular to the wave crests in this region. For wave periods of about 1 s or 
greater horsehair sheets with plane sides were used whereas for periods less than this 
it was found that the horsehair acted as a source for secondary waves which travelled 
across the tank. For these shorter periods it was found necessary to dispense with 
any absorption along the sides of the tank up-wave of the model area and to use 
two impervious wave guides running perpendicular to the wave crests and situated a 
distance apart which was slightly less than that of the absorbers down-wave of the 
model. A set of baffles was situated near the end of the wave guides to reduce the end 
effect of these guides. Thus a wave generated by the wave paddle travelled between the 
two parallel sides until it came to the model area; here the width of the water surface 
was greater aad it was found that only small secondary disturbances were created by 
the saw-tooth absorbers in this area. Wave energy incident obliquely onto the wave 
guides from the model area underwent multiple reflexions from the guides and eventu- 
ally reached the up-wave end of the tank and was absorbed by the wave absorber 
situated in front of the wave paddle. 

The absorber in front of the paddle must allow waves generated from the paddle to 
travel through it with as little distortion as possible and must be able to absorb 
efficiently waves incident from down-wave of the wave paddle. The waves generated 
by the wave paddle will be reduced in height as they travel across this absorber, but, by 
adjusting the height of the generated wave, the absorption can be compensated for and 
the desired incident wave height produced. It is clear that this absorber must have 
equal absorption along its length to keep distortion of the incident wave to a 
minimum. This immediately excludes a saw-tooth type of absorber and for periods 
less than about 1 s a strip of horsehair with parallel sides also proved too asymmetric. 
It was found that 1.25 em diameter glass marbles tightly packed in a single layer 1.2 m 
wide across the tank proved to be an adequate absorber and allowed for a relatively 
undistorted incident wave, A plane wave incident normally from the model area on the 
wave paddle was found to bereduced inamglitude by 87 yo after crossing andrecrossing 
the marble absorber. Figure 4 shows a typical arrangement of absorbers in the tank. 

6.3. The wave probe 
The wave heights were measured by using a micrometer resistance-type wave probe 
of the same design as that described by Wong, Ippen & Harleman (1963). Basically its 
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FIQURE 4. Schematic diagram of the wave-absorber arrangement for 0.5 s < T d 0.8 s .  

principle of operation was that as the depth of immersion of two vertical wires in a 
conducting fluid changed, the electrical resistance between them changed; this change 
in resistance was detected by use of a high frequency strain gauge bridge in conjunc- 
tion with an ultra-violet recording system. Unfortunately, this direct method proved 
somewhat unreliable owing to extraneous changes in the resistance between the two 
sensing wires and to the effect of the meniscus. To eliminate partially this unreliability 
the experimental wave height was compared with a standard wave height recorded 
as soon as possible after the experimental measurement was taken. This standard was 
produced by driving the thimble of the micrometer in circular oscillatory motion by 
use of an oscillatory drive coupled to the micrometer by a set of gear cogs. The motion 
of the micrometer was transmitted to the sensing wires in the form of a vertical 
oscillatory motion whose amplitude could be read off the micrometer scale and com- 
pared with the output obtained from the recording system. 

The results are plotted in figure 5 and show a linear relationship between the recorded 
and actual amplitudes. With a fixed amplitude of motion and using different periods of 
oscillation there was found to be a variation in the recorded output. Thus it was 
necessary to ensure that the ‘standard wave’ and the experimental wave had the 
same frequency or to make a suitable correction to one of them. This variation was 
the same for all amplitudes tested and was caused by a nonlinear response in the 
bridge-recording circuit. 

The actual experimental wave height was then 

H = (Hexp/Hi) d ,  

where Hexp is the recorded experimental wave height, H6 is the recorded standard wave 
height correct to the same period as Hexp and d is the actual distance that the probe 
wires oscillated to obtain the standard. Experience showed that wave heights of 
0.05 mm or less could be measured with a repeatability of within 5 yo; larger waves had, 
in general, a greater degree of repeatability. The major shortcoming of this procedure 
was the necessity, after taking each experimental measurement, of stopping the wave 
generator, waiting until the water surface became undisturbed and then t,aking a 
measurement for the standard. Owing to the spacing of the sensing wires (6 .3  mm), the 
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FIGURE 5. Recorded height aa a function of actual height of 
oscillation of the sensing wires. 

measured wave heights did not correspond to a point measurement but to the average 
of the heights existing a t  each sensing wire. 

7. Experimental verification of the amplification and scattering of waves by 
a submerged circular sill 

In  this section the experimental verification of some of the results in 5 5 is described. 
Basically two experiments were undertaken, the first being the measurement of the 
wave profile over the sill a t  a fixed position using a variable wave period and the second 
the measurement of the surface profile a t  various positions for a fixed wave period. 
An experiment was also run to determine values for the friction constant used in the 
theoretical development. 

In all experiments involving the ocean and circular sill the depth in the ocean was 
set a t  3.36 cm and that over the sill at  0.84 cm. This did not give as high a depth ratio 
as was desired but it proved too difficult to absorb the waves successfully if the depth 
of the ocean was increased greatly. A reduction of the depth over the sill gave problems 
with second-order effects caused by the relatively large wave amplitudes generated 
over the sill by the incident waves. The incident wave was typically 0.1-0-25 mm in 
height, which produced waves of a t  most two or three times this size over the sill. 
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FIGURE 6. The decay coefficient (circles) end friction coefficient (crosses) as a function 
of the wave period for tap water with h = 0.84 mm. 

A circular sill was constructed from a flat steel plate 45.7 cm in diameter and 2.54 cm 
thick; this plate was surface ground such that its thickness was constant to within 
0.025 mm. The water depth was measured, using a vernier point gauge, by taking the 
difference in readings between when the point just made contact with the water surface 
and when it was in contact with the bottom. Several depth measurements were taken 
and averaged over the sill and in the deeper water. These measurements were accurate 
to about & 0.4 mm for the deeper water and to about & 0.2 mm for that over the sill. 
The greater accuracy over the sill was possible because the model had a very precise 
thickness whereas the glass plate, although on average quite flat, had small irregu- 
larities in its surface. 

7.1. The linear friction constant 
The circular sill was removed from the tank for the experiment to determine the friction 
constant and the water depth set to 0.84 cm. Waves of a fixed period were generated in 
the tank and their heights were measured at intervals along the wave tank. To 
eliminate the possibility of errors caused by the reflexion (although small) from the 
end of the tank, the wave paddle was started from rest and a recording made of the 
transient and steady-state waves generated. It was found that aft,er two or three 
cycles a steady state was reached. The wave heights were plotted against distance on 
semi-log paper and from the resulting straight line a value of the decay coefficient a was 
deduced. 

Equations (1 1 )  and (12) form a pair of nonlinear equations in the two unknowns, 
namely k and c.  These equations were solved numerically for a given wave period, 
water depth and experimentally determined decay coefficient. 

A variety of values for a were determined using wave periods ranging from 0.4 to 
2.6s and corresponding values for c calculated. The results are plotted in figure 6; 
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the solid lines designate a least-squares polynomial fit to the points and it was this 
polynomial that was used to calculate c for the experiments involving the circular sill. 
Linear boundary-layer solutions (Biesel 1949) show that the decay coefficient should 
vary as 27-4; these experiments revealed a stronger dependence on T than that 
predicted. As found by a number of authors (for example Iwagaki, Tsuchiya & Chen 
1967) the predicted values for the decay coefficient were considerably lower than the 
experimental ones. 

The value for c found above was used for the other fluid depth of 3.36 cm; this was 
justified first in that it is not expected that the fluid depth will appreciably affect the 
amount of energy lost in the thin layer near the bottom and second by experimental 
verification carried out by Pite (1973). Any dissipation at the free surface by the 
formation of a surface film was found to be negligible. This was established by 
thoroughly mixing the fluid to break up any surface film at  the free surface and then 
measuring the wave heights at  a fixed point at regular time intervals. This procedure 
was carried out for both water depths and no variation in the wave amplitude with 
time was found. This result is in agrsement with theoretical work of Van Dorn (1966) 
that showed the surface dissipation to be much less than the bottom dissipation when 
reasonably long waves were used. 

7.2. Measurement of the surface projile over the sill for various wave periods 
The surface probe was set a t  a fixed position over the sill and wave heights were 
measured for a variety of wave periods using a fixed amplitude of motion of the wave 
paddle. The circular sill was then removed from the tank and wave heights were 
measured a t  a few positions in r < R with the probe situated along the 8 = +n line. 
These measurements, when averaged for each period, corresponded to the incident 
wave height. The wave heights Hf measured over the sill were compared with the 
height Hi of the incident wave of the same period. 

The ratio H f / H i  of these two heights gave the surface response over the sill to 
a forcing wave of unit amplitude. These results are shown graphically in figure 7 
and compared with the theoretical predictions calculated using (20); the friction 
constant for the various wave periods was calculated from the empirical relation 
determined experimentally in 4 7.1. There appears to be reasonably good agreement 
between the experimental results and those predicted by the theory. For comparison, 
the theoreticalresultswhen friction is neglectedarealso plot,ted on figure 7. The build- 
up of the wave height over the sill corresponding to the maximum at about k ,  R = 4.2 is 
shown in figure 8 (a)  and the reduction in wave height corresponding to the minimum 
at about k, R = 5.5 is shown in figure 8 ( b ) .  These figures reveal that a steady-state wave 
height was reached after about 8 or 10 cycles. 

7.3. Measurement of the surface projile at different radii 
using a constant wave period 

Using a constant wave period and a fixed value of the angle 8, wave heights were 
measured a t  various radii over the sill and in the ocean. The sill was then removed from 
the tank and the wave heights were measured along the 8 = &r line; an average of 
these results was taken to give the incident wave height. The variation in wave height 
across the tank was generally less than k 5 yo from this average and was attributed to 
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FIGURE 8. Wave profile showing (a) the build-up and ( b )  the reduction of wave height over the 
sill with parameters as in figure 7 and (a) b,R N 4.2, ( b )  k ,R N 5.5. 

interference effects from secondary waves incident from the absorbers. See Pite (1973, 
figures A 7 . 5 A  and A 7 . 5 B ) .  

The wave heights measured with the sill in place were compared with the average 
incident wave height to give the ratios H,IH, over the sill and HJ Hi in the ocean. These 
results are shown in figures 9(a) ,  ( b )  and ( c )  for wave periods of 2.37 s (k,R = 2.08), 
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FIGURE 9. The relative height of the waves in the ocean and over the sill for (a) T = 2.37 s 
(k,R = 2.08), ( b )  T = 0.977 s (k,R = 5.15) and (c) T = 0.604 s (k,R = 8.40) (relative to a 
forcing wave of height = Hi).  0, experimental; -, theoretical with c a8 determined experi- 
mentally; - - - -, theoretical with c = 0. h,/h, = t ,  R/h, = 27, h., = 0.84 mm. 
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0 
1 
2 
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4 
5 
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T = 2.37 s 
(k,R = 2.08) 

r------+ 

2.338 0.540 
2.450 0.815 
1.226 0.141 
0,522 0-006 
0.242 0.000 
0.116 o*ooo 
0,057 0~000 
0-028 0.000 
0.013 0.000 
0.001 0~000 

lAnl 1% I 

T = 0.977s 
(k,R = 5.15) 
7-7 

1.749 0.651 
2.496 1.171 

,3.525 1.231 
3-107 1.149 
0.903 0.153 
0-305 0.012 
0.125 0.001 
0-055 o*ooo 
0-025 0.000 
0.012 o*ooo 

IA?i I 1% I 

T = 0.6048 
(k,R = 8.40) 
--LA 7 

1.455 0.479 
2.252 1.278 
2.896 1.023 
2.493 0.404 
2.392 0.377 
2.799 0.775 
1-569 0.329 
0.339 0.028 
0.113 0.002 
0.045 0.000 

IAn I IBfl I 

TABLE 1. The theoretical response coefficients used to calculate the surface profile 
for parameters corresponding to experimental conditions. 

0.977 s (k,R = 5.15) and 0.604 s (k,R = 8.40) respectively. The theoretical results are 
in reasonablygood agreement with the experimental ones. The rather large discrepancy 
near the left-hand side of the sill edge on figure 9 (c) is a consequence of the incident 
wave in this region having a somewhat lower height, due to interference from secondary 
waves from the absorbers, than those of the average. Although the results are low in 
this region, the variation in height with radius agrees well with the theoretical variation. 

The theoretical curves when friction is neglected are also drawn on these figures and 
indicate a much larger range of wave heights than was found experimentally or 
theoretically when friction was included. Table 1 lists the response coefficients lAnl 
and lBnl corresponding to the wave periods given above and shows that for T = 2.37s 
only the lowest modes are of importance whereas the higher-order modes gain im- 
portance as T decreases. 
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8. Conclusions 
The response coefficients over a submerged circular sill subject to the diffraction of 

a plane wave from the ocean were found using the matching conditions at the depth 
discontinuity of a continuous surface streamline and a continuous energy flux. 
Physical arguments indicated that the nth response coefficient over the sill should be 
a maximum when the sill edge was near a zero of Jn(k2R); numerical calculations 
showed this to be the case. Therefore as t,he radius of the sill becomes progressively 
smaller compared with the wavelength fewer and fewer modes are present over the sill. 
The effect of friction was to reduce the response coefficient over the sill and this reduc- 
tion was found to be proportionately greater for the high-Q modes than for the less 
sharp ones. A reduction in magnitude of the peaks and troughs corresponding to the re- 
sponse coefficient in the ocean was found and, again, this reduction was greatest for the 
more sharply tuned modes; lBnl no longer reached its extreme values of zero and en. 

Since the zeros of Jn(k2R) are interlaced and, for a given n with k,R sufficiently 
large, are separated by approximately n, in a relatively narrow frequency band there 
will be many resonant modes present. With regard to the effect of friction on lAnl and 
to the fact that each mode generally has a different phase from any other it is unlikely, 
at the higher frequencies, that any single mode will be dominant over the rest. This is 
not the case a t  lower frequencies, where only the lower modes are present and their 
resonant peaks do not overlap greatly. 

This theory of wave diffraction with damping over a circular sill was verified in two 
experiments. In the first all parameters were held fixed and the wave period was varied 
while in the second the position of measurement was varied along a radius with the 
period constant. The results agree quite well with the theoretical ones and show a 
large difference from those predicted by frictionless theory. 
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